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Orientation effects in the stopping of slow dimers in an 
electron gas 
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t lnsfitut fur 7heoretische Fhysik, Technische UmversiW W-3300 Braunschweig, Germany 
t laboratory of Physics. Helsinki University of Technology, SF-02150 Espoo. Finland 

Received 10 August 1992 

Abstract. We present a theoretical smdy on the stopping of slow homonuclear dimers in 
an elecWn gas. Rigorous formulae are presented which express the stopping in tems of 
the elastic scattering cross d o n  of the electrons off the electrondimer potential. Explicit 
results are derived for potentials that allow separation of the SchrBdinger equation in ellipsoidal 
coordinate.? these express the stopping power immediately in terms of the phase shifb. The 
results are evaluated for a model potential. with emphasis on orientation effects in dimer stopping. 
For small elecnon gas densities. dimers aligned wilh their direction of Right are slopped most 
strongly; this effect is related to the focusing of ekckons towards the dimer axis. For high 
electron gas densities. dimers oriented perpendicular to the flight direction are slopped most 
strongly, since they offer the largest cmss section for large momenmm transfer cmss collisions. 

~ 

1. Introduction 

For more than a decade, the stopping of fast dimers penetrating thin foils has been 
investigated experimentally [ 1-41 and theoretically [5-71. In more recent experiments, 
the electron emission accompanying the penetration of dimers through thin foils could be 
detected in coincidence with the dimer orientation [SI: here, a considerably larger electron 
yield was found for dimers aligned in the beam direction than for those aligned perpendicular 
to the beam. The theoretical investigation of these phenomena assumes that the stopping of 
the dimer is predominantly due to the interaction with the electron gas in the foil. Collisions 
with the nuclei of the atoms of the foil are disregarded, even though they are doubtlessly of 
some importance, in particular at low velocities. At high velocities (U 2 1 in atomic units), 
however, the penetrating projectile forms a dynamical wake in the electron gas with which 
the electrons interact [9]. 

Recent theoretical approaches to the problem of dimer stopping [10,11] model the 
electron-dimer interaction as a linear superposition of two unperturbed elecmndtom 
potentials, and use the Bom series to calculate the scattering characteristics. This approach 
appears viable as long as the individual electron-atom potentials do not overlap, i.e. at 
sufficiently large interatomic separations and electron energies. In the present paper, we 
shall consider the opposite situation of strong overlap. where the electron can be assumed 
to scatter off the molecule as a whole. This situation will generally be realized at smaller 
electron energies and internuclear distances. 

In this paper, we wish to study the stopping of homonuclear dimers in an electron gas 
under the assumption that the electron Fermi velocity, up,  is large compared to the dimer 

5 Permanent address: Fachkmch Physik. Universiw Postfach 3049, D-6750 Kaisenlautem. Federal Republic of 
Germany. 
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velocity. Under this condition, it can be assumed that the stopping of the dimer is due 
to the elastic scattering of the electron gas electrons off the fixed electron4mer potential: 
inelastic effects can be disregarded. We shall be able to present explicit results, if the form of 
the potential allows the Schr6dinger equation to separate in prolate ellipsoidal CoodinateS. 
This method has been used by Eu and Sink to study scanering off a hard ellipsoid [12] and 
by Li for the continuum (scattering) states of HZ 1131. The same coordinate system was 
employed by a number of researchers to simplify the scattering calculations in electron- 
molecule collisions, even though a non-separable potential was used [ lb19] .  By employing 
the method of phase shifts, we shall be able to give exact solutions. Explicit results shall 
be presented for the case of a model potential. 

2. Dimer stopping: general formalism 

Following 1201, which dealt with atom stopping, we consider a dimer moving with fixed 
velocity v = (U, e) through an electron gas. Here, U denotes the magnitude of 2). and e its 
direction. The electron gas is macroscopically at rest; the individual electron velocities U 
obey a Fermi distribution 

(1) 
Here n = J d3u f (U) is the density of the electron gas, IJF is the Fermi velocity, and O(x) 
denotes the Heaviside step function. Often, instead of n or w, the oneelectron radius r, is 
used to characterize the electron gas: 

H M Urbassek et a1 

f(u) = (3n/4mF3) O(UF - U ) .  

n = 3/4nr,3. (2) 
We wish to calculate the total force F exerted by the electron gas on the dimer. It is 

easiest to calculate F in the inertial frame of the dimer. In the limit of a large ratio of 
dimer to electron mass-which we shall assume to be given-&& inertial frame coincides 
with the centre-of-mass system. We denote the electron velocity in this system by 

w=u-v (3) 
and the Fermi distribution is transformed to 

(4) 
In this frame, the force exerted on the dimer stems from the scattering of the electrons in 
the electron-dimer potential. Here, we assume the velocities w involved to be so low that 
inelastic collisions, i.e. excitation or ionization of dimer electrons out of states bound to 
the dimer, are negligible. The electron scattering can hence be treated as pure potential 
scattering in the electron-dimer potential; the latter needs to be calculated selfconsistently 
in order to take into account the interaction and screening of the electrons bound to the 
dimer with those of the electron gas, cf section 5.1. 

The flux j of electrons incident with a velocity in an interval d3w around w = (w. n) 
is given by 

g(w) = f(u = w + v) = (3n/41ru~~) Q(UF - Iw + VI). 

j = wg(w) d3w. (5) 
The number of electrons scanered per unit time, dN/dt, out of this flux into an interval 
d*Q' around direction Cl' is given by 

(6) 

(7) 

dN/& = ju (w,  fl --f $3'- n,)dzs2'. 

U = a(w, 61.620, n'. no, n . cl'). 
For electron scattering on a dimer, the differential cross section only depends 011 
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Since potential scattering is elastic, the speed after collision, w', equals w. Due to time 
reversal symmetry, U is invariant undera transformation (51, a') H (-Cl', -O), and hence 

u(w, n * no, a'. n o ,  n . a') = u ( w ,  -al. no, -a. f20, n . n') . (8) 

u(W,n.no,n'.no,n.n')=u(w,n'.no,n.n20,n.n'). (9) 

For homonuclear dimers, a change of 51, H -no has no effect, and hence 

Thus the change of momentum per unit time Ap/A! of the flux of electrons considered 
amounts to 

AP dN dN - = m ( w ' - w ) -  = m w ( n ' - n ) -  
At dt df 

where m is the electron mass. The force on the dimer F is equal to the negative of the sum 
over all momentum changes of the electrons impinging from all directions on the dimer. 
With (5). (6) and (IO), we hence obtain 

F = d w d*Sl'wg(w)u(w, CZ no, 51' *Sa,. n dl')m(w - w'). (11) 
1 3  I 

Figure 1 shows the shifted Fermi sphere in the centre-of-mass system. The Pauli principle 
prevents scattering into occupied states. Hence only scattering out of the states with 

b + W l  < w  (12) 
into unoccupied states 

w<b+w'I 
is permitted. It is easily seen, however, that the latter restriction is immaterial: if we 
include scattering events from an occupied state w into another occupied state w' = wn', 
its contribution to the force (1 1) 

w g ( w ) u ( w ,  61. 51,. 51'. 510. n. n')m(w - w") 

exactly cancels the reverse process w' + w by viltue of time reversal and parity symmetry 
(9). The contribution of every scattering event within the inner sphere of figure 1 cancels 
exactly with the reverse scattering event. Thus it suffices to consider scatteringh of states 
with w 2 IVF - V I .  

Figure 1. Schematics of the Fermi sphere (outer circle), after POI. Since 
"fering preserves electron velocity in the centre-of-mass system the 
Pauli principle prevents scattering out of the inner circle. Scamring 
processes may occur only from electron states in the grey ana into 
unoccupied eleclmn stlfes oulside the Fermi sphere. 

It is therefore correct to omit the Pauli principle restriction on the outgoing states, 
equation (13). altogether. Integration over the ingoing states, however, will be reshicted to 
the grey region of figure I, and we have 

F = -  4nvF3 3mn 1 d 3 w w Z ~ S l f u ( w , ~ . ~ ~ , ~ ' . ~ , , ~ . n ' ) ( ~ - n ' ) .  (14) 
w>lvF-vl. IW+Wl<vF 
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For small dimer velocities, U <( *, the shell in which scattering occurs (the grey area in 
figure 1 )  becomes quite thin and we may approximate the condition describing the integration 
volume in (14) by 

H M Urbassek et a1 

U F  - U 6 w < UF - u(n *e) (15) 

to first order in U. In this same order, the integration over speed w may be performed in 
(14), yielding 

dzQ'U(UF, *no, n'. no, 61')(1 - n * e)(n - n') 

-- 4H 3 mnuFUSdnSds2'o(uF,il.n(r,hl'.nO.n.n')n.e(a-n') 

(16) 

where the symmetry relation (8) has been used. We may write (16) in tensorial form 

F = -mnuFu&(UF) * e (17) 

with the tensor 

&.(UF) - d Q d2Q'U(UF, $2 * 00, Cl'. 00, n')n(n - n'). (18) 4n 3 s 2  s 
As is easily seen, & is a symmetric positive tensor, and hence can be diagonalized. Since 
00 is a symmetry axis, 00 and two arbitrary perpendicular axes are principal axes, with 
diagonal elements 

d2Q2'a(UF,O.no,n'.n,,n.n')(n.q)(sl-s2') .Sa0 

(19) 

Ui (UF)  = - dzQ dZQ'U(UFI * no, a' * no, * n')(n * ai)@ - a') n.t 4H 
(20) 

where n~ * 00 = 0. The transport cmss sections U,, and ai quantify the momentum transfer 
to a dimer whose orientation is aligned with its velocity, or perpendicular to its velocity, 
respectively. 

3 s  s 

(a) laboratory system (b) center-of-mass system 

Figure 2. Relevant directions. The dimer orientation no and the direction e of the dimer 
velocity define a plane. which is plotted, n~ is lk d k t i o n  perpendicular to 530 in this plane. 
The angle khveea 520 and e is y ;  eA is the direction perpendicular to e in lhis plane. n and 
n' m the directions of an eleckon in the centre-of-mass system, before and after scattering on 
the dimer, respectively. 17 and 0' are generally not in the plane plotted. 

Let us denote the angle between e and 620 by y .  cf figure 2: 

cosy = 00 e. (21) 
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We specify a direction Sal  perpendicular to in this plane such that 

e = cosy Slo + sin y al. (22) 

F = -mnuFu[~~(~F)COSyno +Uj , (UF)ShyaJ. ] .  (23) 
The prefactor ~ ~ U F U  of the force in (U) denotes the product of electron flux n u p  on the 

dimer and the net momentum transfer mu. It is hence only the two transport cmss sections 
that contain information on the scattering dynamics. 

Equation (23) shows that generally F is not aligned with the direction of the velocity 
e. The component of F in the velocity direction is called the stopping power: 

Inserting this into (17). it is readily seen that 

- dE/dx = - F .  e = mnupu[cosZy q ( v p )  + sinZ y U J . ( U F ) ] .  (24) 
The component perpendicular to it is given by 

F e e l  =mnupu[ull(~~) -u l (u~)]cosys iny .  (2-5) 
It may lead to a deflection of the dimer trajectory from its straight direction e. We wish to 
note that the terms stopping power and deflection assume that the electron scattering only 
affects the centre-of-mass motion of the dimer: we thus neglect the fact that (pat? of) the 
force may excite dimer rotation and vibration. We note, however, that the torque on the 
dimer due to its interaction with the electron gas could be calculated in analogy to (14). 

For a randomly oriented dimer, the stopping power amounts to 

-- = gmnupu Spur&(up) = mnupu[fu,l(uF) + SuL(uF)] (26) i 3 
while the deflection vanishes. 

and the two transport cross sections coincide to 
For a spherical particle, e.g. an atom, no dimer axis no exists, and hence U = o(n ma’) 

UU(UF) := 0 l l ( U ~ )  = Ul(UF) = - dZQ dzQ’u(w, 0 * n’)(hl* 2)@ - a‘) * 2 
472 

(27) 
’ I  I 

when o may be any unit vector, or 

U U ( U F ) = ~ X  d(62.~’)~(~~,61.61‘)(1-a.a‘) (28) J 
and 

(29) 

Hence our results for adimer coincide with the well known results [20,21] for atom stopping, 
(28) and (29). 

3. Scattering in eUipsoidal coordinates 

In this section, we wish to calculate the scattering cmss section of electrons in a potential 
V for the special case that the Schr6dmger equation separates in ellipsoidal coordinates. 
From this section on, atomic units (e2 = fi  = m = 1) will be used. In the centre-of-mass 
system, the Schriidinger equation for the electron wavefunction Y is 

dE 
dx mnvFu%(VF). - -=  

(-AA + V ( q ,  rz) - E)” = 0. (30) 
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Here, I/ is the electron-iimer interaction potential, and r, (rz) measures the distance of the 
electron to atom 1 (2) of the dimer. 

Let us assume the potential is of a special form such that (30) separates in prolate 
ellipsoidal coordinates p = (rl + r z ) /R ,  U = (rl - rZ)/R and azimuth fp around the dimer 
axis; R denotes the internuclear distance of the dimer atoms. Separation of (30) leads to 
eigenfunctions of the form 

H M Urbassek et a1 

QIIp(p9 (P) = J r ( k R ,  p)S;"(kR, v)%((P) (31) 
where we indicated the dependence of the functions on the quantum numbers m and f ,  and 
on the scaled energy via the wavenumber k = m, explicitly. The quantum number m 
measures the angular momentum around the dimer axis, while l corresponds to the usual 
total angular momentum quantum number in the united atom limit. Note that in contrast 
to the spherically symmetric case, the angular eigenfunctions S;", called prolate spheroidal 
functions [22], depend explicitly on energy. We use them in the normalization of Morse 
and Feshbach [23] (see also [24]). The radial wavefunctions satisfy 

where 

V ( p )  = 2RZ(pz - u2)V(rl ,  r2) 

J,'"(p + I) = constant x (p2 - I)~' '  

Q ~ eikR.r 

(33) 
and r,'"(kR) is a separation constant. We calculate Sr and rr using an algorithm by Ress 
and co-workers [25]. The radial equation is solved for the boundary conditions I261 

~ / " ( p  -+ w) = 0. (34) 
We look for scattering solutions of the form 

(35) 
2 + f ( k R ,  Sa -+ Sa', %)-eikRK for p + w 

RCL 
where Sa is the direction of the incoming electron, and f is the scattering amplitude for 
scattering into direction Sa'. Note that, for large /A, Sa = (U, 9) is identical to the usual 
parametrization of the solid angle in terms of the cosine of the polar angle and the azimuthal 
angle with respect to the dimer axis. The scattering amplitude is given by 

f ( k R , S a  -+ Sa',Sao) = -C-Sm(v)S;"(u')cosm((p-9')exp(irl,m)sinrlr 
1 2  

k m,l  A; ' 
(36) 

where the sum is over all non-negative 1 and -f < m < I, and AF(kR) = 
./!,dv [S;"(kR, " ) I2  is a normalization constant 1121. The phase shifts q;"(kR) have been 
determined numerically from the difference of the solution of (32) with and without the 
potential V .  The scattering cross section is then determined from the scattering amplitude 
by 

g ( k R ,  Cl + Sa', 00) = I f ( k R ,  Sa -+ Sa', Sao)I2. (37) 
The total scattering cross section is then given by 

+ot(kR, L? * San) = d2C2'U(kR, Sa --+ Sa', 610) (38) s 
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In the following, we shall specify our results for a modified Yukawa potential 

where Z measures the strength of the interaction, and a is a screening parameter. In the 
united atom limit, R -+ 0, thepotential is of purehkawaform, V(r) = ( 2 Z / r )  exp(-kr) ,  
where rl = r2 = r .  The factor exp(aR) has been introduced in (40) in order to retain a 
Coulomb-like singularity of strength Z at the sites of the nuclei. 

It is easily seen that only the parameters a/Z, E / Z Z  and RZ enter the problem. In the 
following, we shall thus specify Z = - 1  without loss of generality. The negative value of 
Z characterizes the aaractive interaction between the nuclei and the electrons of the electron 
gas. 

4. Dimer stopping in ellipsoidal coordinates 

The transport cross section of aligned dimers q. equation (19), can be calculated by 
substituting the cross section (37) into (19). The two azimuth integrations can be trivially 
performed. Figure 3 shows the resulting transport cross section when terms up to I = 8 are 
kept We ensured that this choice is sufficient for the parameter range shown. 

It is possible to calculate the transport cross sections approximately in a simple way. 
This can be done by approximating the spheroidal functions by their asymptotic values for 
small energy, k R -+ 0: 

This approximation gives 

The comparison in figure 3 proves that this approximation is sufficiently accurate for our 
purposes. 

Analogously, the perpendicular transport cross section evaluates to 

where Y i  = 1 for m = 0, and 2 otherwise. 

and (43) reduce to 
One easily shows that for the spherical problem, i.e. if qy = ql independent of m, (42) 

This is the well known and exact result for the transport cross section for a spherically 
symmetric potential [21]. 
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1 oc 
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I C  

1 

--q 4;p *.__.' 

R=2 rs=3 

R 
2 5 10 0 2 4 6 

Figure 3. Comparison of the eanspon c m  section 91 of a Hld imer  ( Z  = -1, n = 1) 
calculated rigorously from (19) (full curve), and fmm lhe approximation (42) (broken c w e ) .  
The Fermi velocity is given via the one-electron radilts r,. cf (2). 

rS 

5. Results and discussion 

5.1, Self-consistency 

In the following, we wish to apply our results to a self-consistent dimer potential. We 
identify Z in (40) with the atomic charge of a dimer atom. Then the screening (I is chosen 
according to the Friedel sum rule [21,27,28], which stems from the requirement that the 
electron gas totally screens the dimer; it essentially expresses charge neutrality. For a dimer, 
it is 

For the modified Yukawa potential (40). the Friedel sum rule can be used to fix the screening 
(I if Z and R are given. 

5.2. Stopping of dimers in an electron gas 

In figure 4,  we display several quantities connected with the scattering of electrons off a 
dimer in an electron gas. Figure 4(a) shows how the self-consistent screening (Y increases 
with increasing electron gas density. However, even for a dilute electron gas, r, + 03, the 
screening does not vanish. This behaviour is reflected in the dependence of the phase shifts 

against electron gas density, cf figure 4(b). For larger,. all phase shifts are small except 
'loo, i.e. we have dominant s scattering. Here 11: + x indicating that, for small electron gas 
densities, we have one (doubly occupied) bound state. This is a direct consequence of the 
Friedel sum rule (45). Note that for small electron gas densities, Hi is therefore neutral. 
This is in contrast to the case of embedding a H atom in a dilute electron gas, where H- is 
the stable charge state at small electron gas densities. 

For increasing electron gas densities, phase shifts f with larger 1 values contribute. 
and even become dominant. In the r, region displayed in figure 4, this applies in particular 
to the 1 = 1 states. 

The total scattering cross section shows a distinct and interesting orientation dependence: 
over the whole range of electron gas densities shown, scattering on an aligned dimer is 
stronger than on a dimer that is oriented perpendicular to its velocity. Formally, this 
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0 

Fwre 4. Selfconsistent interaction of a HZ dimer (R = 2.0) with an electron gas, as a function 
of the elecvon gas one-electron radius r,. (a) Screening 01 determined self-consistently via the 
Friedel sum rule (45). (b) Phase shifts e. The parameters at the curves indicate the relevant 
values of (ml). (c) To@ scattering c m s  section umt for dimers aligned (11) and perpendicular 
(I) to their velocity. (d )  Transpolf cmss section for dimers aligned (11) and perpendicular (I) 
to their velocity. 

behaviour is connected to the fact that sinZ I$ >> sin' q:.'Since it is essentially this quantity 
that weighs the orientation dependence of uml in (39). the total scattering cross section is 
large where lSpl is, i.e. at U = 51, for the aligned geometry. 

Intuitively, this orientation effect can be explained in a classical picture as follows. 
Electrons incident parallel to the dimer axis are attracted by the first atom further toward 
the axis and thus come close to the second atom, where they are then even more strongly 
scattered The focusing effect is missing for electrons incident perpendicular to the dimer 
axis. This effect has recently been discussed in a more detailed way [29]. 

The scattering cross section has a maximum at a one-electron radius of rs Z 5;  the 
exact value depends on the dimer orientation. It decreases towards larger r,, since then all 
I$' + 0 except I# which tends torr; hence, according to (39), utot vanishes. At small r,, on 
the other hand, qOt decreases. Here the region of validity of the first Born approximation 
starts, which predicts ulot 0: I lkZ  for large k. 

Figure 4(d), finally, displays the transport cross section. Its general dependence on the 
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one-electron radius r, follows U,, with a maximum at r, = 5-10 and a decrease towards 
zero for small and large electron gas densities, Its orientation dependence is more intricate, 
though. While at small gas densities, the aligned dimer is more strongly stopped than in 
the perpendicular orientation; this behaviour is reversed for r, < 3. This is due to the fact 
that the transport cross section predominantly measures strong scattering events, i.e. large 
deflections a' - 0, cf (18). Classically, this favours impact parameters in the vicinity of 
the nuclei, and hence the perpendicular orientation, since here two nuclei, rather than one, 
are 'visible' to the electrons. In quantum mechanics, this feature gains importance only for 
high electron gas densities where the relevant electron wavelength h is sufficiently small. 

Figure 5 shows total and transport cross sections of a 11' dimer in a dense (rs = 2) and 
dilute (rs = 5) electron gas, as a function of internuclear separation R .  The averaging of uta 
has been performed numerically by integration over all molecular axes 4. A prominent 
feature are the oscillations for r, = 2 in the aligned geometry. They appear to represent 
a resonance condition where half the electron wavelength 112 3.3 coincides with the 
intemuclear distance R. From what has been said above about the focusing effect in the 
aligned geometry. such a resonance is not to be expected in the perpendicular geometry. In 
fact, there the oscillations are considerably weaker, such that the averaged cross sections 
are rather smooth. For a dilute electron gas, the cross sections show a behaviour similar to 
the high-density case, but on an enlarged scale of intemuclear distance. This is correlated 
to the fact that the electron wavelength increases with r,, 1 2 3.3rS. 

H M Urbassek et a1 

53. Discussion and outlook 

Available theories of dimer stopping in a homogeneous electron gas take their starting point 
from a superposition of two Yukawa potentials based on the atomic nuclei of the dimer 

(46) 

where the screening constant a is calculated via the Friedel sum rule self-consistently for 
one arm in the elecmn gas. Stopping is calculated via first-order [5,6] or second-order [ 111 
Bom theory. Often, only s-wave scattering on each atomic nucleus is taken into account 
[61, even if multiple scattering effects of electrons between the nuclei are considered 171. 
Orientation dependent effects have not been rigorously discussed following this line of 
approach. This approach is reasonable, if scattering on each atom is not influenced by the 
presence of the other atom, i.e. if R > 2 / a .  For atomic distances of the order R 2 2, this 
is fulfilled for a 2 1. Hence for realistic densities of the electron gas, this approach is at 
the boundary of its domain of validity. 

Our approach, on the other hand, is well adapted to the case of overlapping screening, 
R < 2/a. In the united atom limit, R + 0, our potential is equivalent to the above, and it 
is still reasonable for small R. While our method of solution is valid, and converges well, 
also for large R ,  the potential becomes unsatisfactory in that case. In fact, then we do not 
obtain realistic separated atoms. Thus, for realistic electron gas densities, our potential is 
also at the limits of its domain of validity. 

The numerical results presented here are therefore mainly meant as model calculations. 
The results could be improved if the scattering cross sections for a more realistic potential 
were at hand. As a more realistic potential the above superposition of two Yukawa potentials 
(46) may be used. It would be even more preferable, however, if a self-consistent calculation 
on the basis of density functional theory were available. Then our formalism could be 
applied to calculate the transport cross sections and the stopping. 

2 2 
V(r l ,  rz) = -e-ar' + -e-On 

rl rz 
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Figure 5. Selfsonsistent total scanering cross section (U). (d and t r a n s p i  cross settion (b), 
(d )  of a H: dimer as a function of inlemuclear distance R, for electmn gar parameten r, = 2 
(a), (b)  and r, = 5 (c). (d),  for dimers aligned (11) and perpendicular (1) lo lheir velocity, and 
lhe average value for random orientation (0). 

The interaction of a slowly moving dimer with an electron gas certainly represents an 
interesting model problem. We mention a number of issues that have not been covered in 
the present work. 

First, how does stopping depend on the rotational state of a dimer? 
Second, molecular projectiles may dissociate while slowing down. What does this imply 

for the stopping power? How is the energy distributed among the constituents? 
Third, and finally, dimers may become vibrationally excited by the interaction with the 

electron gas. This represents rather an involved issue. Low-energy electrons can scatter off 
a dimer resonantly so that they linger around long enough to make the dimer vibrate. The 
usual notion is that electrons scattering off closed-shell dimers may occupy anti-bonding 
orbitals and thus soften the dimer with the possibility of dissociating it. When a slow electron 
approaches an open-shell dimer such as %’, on the other band, it sees unoccupied bonding 
orbitals; then a strong scattering situation may result, in which even the Bom-Oppenheimer 
approximation might break down. We expect, however, that these complications are not 
as important for a dimer screened in an electron gas as they are in the case of low-energy 
electrons scattering off a dimer in vacuum. Dynamic effects are smaller for the screened 
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dimer than for the free one, simply because in the first case the effective potential is weaker 
and the dimer bonding states always remain occupied. 

Experimental measurements of H:-ion stopping have been published for velocities 
U 1 0.7 in C (rs = 1.6) and AI (rr = 2.1) foils [1,3]. The experimental data were 
presented in the form of the so-called vicinage function 

H M Urbussek et a1 

which measures the relative deviation of the (orientation averaged) dimer stopping from the 
stopping of two isolated atoms. While the experiments measured g = -0.1 . . . - 0.2, our 
calculation predicts g E f0.1 . . . f0.2, cf figure 6. In view of the experimental uncertainty, 
this discrepancy does not appear to discriminate against our approach. However, figure 6 
shows that we predict strong deviations between the stopping of a &+ dimer and two isolated 
H atoms in dilute electron gases. This is due to the above-mentioned fact that, as well as 
a H atom, a H l  dimer binds two electrons in the electron gas. Hence a dimer interacts as 
a neutral entity with the electron gas, and the scattering decreases strongly with increasing 
electron wavelength, i.e. r,. H atoms, on the other hand, become ionized H- in the electron 
gas, and hence scatter more strongly. As a consequence, g diminishes with increasing r,. 
It might be interesting to try to measure this effect by bombarding high-r, materials with H 
atoms and H: dimers and measuring the difference in stopping. 

Figure 6. Vicinage function g. cf (47). of a Hi dimer 
as a function of internuclear distance R. TIE cuwes are 

2 4 6 R 8 parameuized bytheone-electmnradiusr,. 
-1.0 

0 

At large values of R, g should go to zero. This is not the case in figure 6, and directly 
reflects the deficiencies of our potential (40). As discussed above, our model potential only 
describes scattering satisfactorily for overlapping screening R c Z/a. 

Quite recently, orientation effects in dimer stopping have been measured for higher dimer 
velocities, U = 2 [8]. These velocities are unfortunately too high to apply our formulae 
for the stopping power (24) directly, since these have been derived under the assumption 
U << UF 1.9/rs. An evaluation of (14) that holds true for all velocities does not appear to 
be straightforward. 

6. Summary 

We presented rigorous formulae for the stopping of a homonuclear dimer in an electron 
gas for small velocities, U << UF. These formulae make use of the assumption that, in the 
inertial frame of the dimer, stopping is due to elastic scattering of electrons off the dimer 
potential and that inelastic scattering, i.e. excitation or ionization of electrons bound to the 
dimer, can be disregarded. 
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These formulae were applied to potentials that allow sepamtion of the SchrCdinger 
equation in prolate ellipsoidal coordinates. The stopping can then be expressed in terms of 
the phase shifts $'. 

We evaluated the results for a model potential, with emphasis on orientation effects 
in dimer stopping. We showed that, at small electron gas densities, dimers flying in the 
direction of the dimer axis are more strongly stopped than dimers flying perpendicular to 
this axis. This effect can be related to the focusing of electrons toward the dimer axis. 
For high electron gas velocities, aligned dimers are less stopped, since they offer less cross 
section for central, i.e. large momentum transfer, collisions. 

Our potential becomes unphysical for large internuclear distances of the dimer. It should 
represent reality quite well, however, for small distances. It therefore offers an approach 
that is complementary to that of other authors who concentrate on modelling the separated 
atom-limit well. We emphasize that our general formulae are valid, as long as the ellipsoidal 
phase shifts vi" can be determined from the potential. 
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